欧美在线一二,五月婷婷激情,国产最新美女精品视频网站免费观看网址大全,国产蜜臀视频一区二区三区,日本91在线,国产树林野战在线播放,江苏白嫩少妇高潮露脸

《乘法分配律》教學(xué)反思

時間:2025-09-15 09:36:24 教學(xué)反思 我要投稿

《乘法分配律》教學(xué)反思范文1000字

  作為一位剛到崗的人民教師,我們要有一流的課堂教學(xué)能力,寫教學(xué)反思可以很好的把我們的教學(xué)記錄下來,怎樣寫教學(xué)反思才更能起到其作用呢?以下是小編為大家整理的《乘法分配律》教學(xué)反思范文1000字,歡迎閱讀與收藏。

《乘法分配律》教學(xué)反思范文1000字

  《乘法分配律》教學(xué)反思1

  我對教材內(nèi)容、學(xué)情進(jìn)行了認(rèn)真的分析之后,確定了教學(xué)目標(biāo):通過小組合作探索乘法分配律的活動,進(jìn)一步體驗(yàn)探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實(shí)際問題和數(shù)學(xué)交流的能力;會用乘法分配律進(jìn)行一些簡便計(jì)算。通過學(xué)生自主研究、小組討論、全班交流以及講學(xué)練相結(jié)合,設(shè)計(jì)相應(yīng)的練習(xí)題,逐步理解抽象的乘法分配律。

  通過教研組全體老師的努力,我們設(shè)計(jì)了比較合理的前置性小研究。

  在本節(jié)課的教學(xué)過程中,學(xué)生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點(diǎn),能夠觀察出兩道算式的結(jié)果是相同的;能夠按照算式的特點(diǎn)進(jìn)行舉例;能夠自己說出規(guī)律,總結(jié)規(guī)律;能夠用求結(jié)果和乘法的意義去驗(yàn)證這條規(guī)律的正確性、普遍性;能夠運(yùn)用乘法分配律解決實(shí)際的問題,在做題的同時感受乘法分配律給計(jì)算帶來的方便。

  當(dāng)然,本節(jié)課的教育教學(xué)過程,也是有不足的地方。我認(rèn)為:

  1、教師在施教的過程中,經(jīng)常性的打斷學(xué)生的發(fā)言。其實(shí)這是很不好的習(xí)慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,應(yīng)該有這樣一種意識,那就是“等”的意識。等學(xué)生表達(dá)完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經(jīng)過有智慧的引導(dǎo),幫助他們度過“難過”?墒俏覀兒芏鄷r候,經(jīng)常犯的錯誤是,學(xué)生只要一有點(diǎn)小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學(xué)的匯報,也打斷了王孟陽同學(xué)的匯報,還有好幾次打斷了同學(xué)們的交流活動。

  對于這種打斷可能在心里帶著很僥幸的心理,認(rèn)為我必須在規(guī)定的時間完成某些教學(xué)任務(wù),不能讓本節(jié)課“節(jié)外生枝”?墒,這種心理違背了“生本課堂”的基本教學(xué)理念。

  2、教師在引導(dǎo)的過程中,不能照顧到學(xué)生的想法。像:徐昊同學(xué)和李厚杰同學(xué)在課堂上,表達(dá)了自己的想法?墒俏以谑┙痰倪^程中,沒有給予足夠的重視?赡軐τ诒竟(jié)課的教學(xué),他們的想法,是在浪費(fèi)時間。可是,我的這種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應(yīng)該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。

  3、我覺得學(xué)生們的交流是不夠熱烈的。根本的原因是:學(xué)生們的.研究不夠到位,不會提出自己的疑問,不能對自己的疑問進(jìn)行探索研究。我覺得這都是老師在平時教學(xué)中,沒有給予足夠的指導(dǎo)的原因。

  還有很多的問題,也許是我沒有意識到的。

  結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法。

  我認(rèn)為真正的“生本課堂”是這樣的:

  教師在教學(xué)設(shè)計(jì)、教學(xué)過程等各個環(huán)節(jié),能體現(xiàn)學(xué)生的主體地位,從細(xì)節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學(xué)生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實(shí)現(xiàn)多個知識點(diǎn)的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點(diǎn)的講解。教師千萬要改變原先“計(jì)件工作”的模式,我們還原教育本來的色彩。它應(yīng)該是自然的,富有詩情畫意的。我們身在其中,師生應(yīng)該一起去營造一種氛圍,體會教育給我們帶來的幸和充實(shí)感。

  我立志讓我的課堂,成為我們幸福的源泉。

  《乘法分配律》教學(xué)反思2

  乘法的分配律學(xué)生在本冊書中是接觸過的。譬如第42頁的應(yīng)用題第7題,其中就滲透了乘法的分配律。在數(shù)學(xué)一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學(xué)生理解。

  一、抓住重點(diǎn)。讓學(xué)生理解乘法分配律的意義。

  在教學(xué)時,我是按照如上的步驟進(jìn)行教學(xué)的。可是在我引導(dǎo)學(xué)生把算式寫成等式的時候讓學(xué)生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學(xué)生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進(jìn)行聯(lián)系。根本沒有從數(shù)字上面去進(jìn)行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學(xué)生寫出幾組算式后,觀察分析幾組等式左右兩邊的`區(qū)別之后,學(xué)生也還是無法用語言來表達(dá)這一規(guī)律。場面一時之間很冷,后來我只好直接讓學(xué)生用字母來表示,變化為這樣的形式之后,有很多的學(xué)生都能夠?qū)懗鰜怼?/p>

  我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學(xué)生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進(jìn)行表達(dá)。難道是坡度給得不夠嗎?還是平時的教學(xué)中出現(xiàn)了問題。這些都要一一地去分析。

  二、考慮學(xué)生的學(xué)習(xí)情況,尊重他們的主觀感受。

  在引導(dǎo)學(xué)生把兩道算式拼成一道等式之后,我讓學(xué)生交流,結(jié)果學(xué)生給出了兩種(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學(xué)生對乘法分配律的意義的理解。我認(rèn)為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實(shí)都是可以的。所以在用字母來表達(dá)時,我們班的同學(xué)也有了兩種的表達(dá)方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

  三、練習(xí)中注意乘法分配律的變式。

  乘法分配律的意義是用,是為了計(jì)算的簡便。所以,在練習(xí)中我注意讓學(xué)生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1) 和74×20+74.一定要學(xué)生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學(xué)生在完成想想做做第5題的時候,一大半的學(xué)生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習(xí)時也是一樣。

  今天教學(xué)了運(yùn)算律——乘法分配律,對于例題的解決,學(xué)生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計(jì)算得出計(jì)算結(jié)果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學(xué)生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學(xué)生再仿寫了幾個算式后讓學(xué)生觀察等式總結(jié)自己的發(fā)現(xiàn),學(xué)生會用字母表示出這一規(guī)律,但用語言表述有困難了。

  《乘法分配律》教學(xué)反思3

  昨天,我與全班同學(xué)一起進(jìn)行了乘法分配律探討學(xué)習(xí),從作業(yè)的反饋中,一部分同學(xué)的作業(yè)相當(dāng)完美,對公式的應(yīng)用,變形拓展都能應(yīng)用自如;我也發(fā)現(xiàn)部分學(xué)生的正確率很低,特別乘法分配律的“分別”相乘理解得不清楚,沒有把每個加數(shù)與因數(shù)相乘,造成作業(yè)正確率低。針對這種情況,在教學(xué)中應(yīng)該注意些什么,我積極思考,與同學(xué)進(jìn)行交流,找出他們思維中出錯的原因,正確進(jìn)行補(bǔ)救,以達(dá)到對乘法分配律的正確運(yùn)用,靈活應(yīng)用。

  一、乘法分配律的教學(xué)時,注重從例題的解答中引導(dǎo)抽象出乘法分配律。強(qiáng)調(diào)注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

  教材中植樹情境圖給出了以下的條件:一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹,“一共有多少名同學(xué)參加植樹活動?”這一問題,得到了如下兩種解答方法。

  方法一:①每組有多少名同學(xué)? 2+4=6人

  ②25組共有多少名同學(xué)參加植樹? 6×25=150人

  綜合列式:(2+4)×25

  =6×25

  =150(個)

  方法二:①挖坑種樹有多少人? 4×25=100人

 、谔疂菜挠卸嗌偃? 2×25=50人

  ③一共有多少人? 100+50=150人

  綜合列式:4×25+2×25

  =100+50

  =150(人)

  同學(xué)們很容易得出(4+2)×25和4×25+2×25這兩個算式結(jié)果相等。這時同學(xué)們往往注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即兩數(shù)的和乘一個數(shù)=兩個數(shù)的積的和,而忽視從乘法意義角度去理解。這時教師可提問“為什么兩個算式是相等的.?”這里不僅要從解題思路的角度理解(4+2)×25=4×25+2×25是相等的,還要從乘法的意義的角度理解,即左邊表示6個25,右邊表示4個25加2個25,等于6個25,所以,(4+2)×25=4×25+2×25

  二、注意乘法分配律的特點(diǎn),多進(jìn)行練習(xí)。

  乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)時學(xué)生特別容易出現(xiàn)錯誤。把算式做成(80+8)×125

  =80×125+80

  =10000+80

  =10080

  為了學(xué)生更好地掌握可以讓學(xué)生劃出分別相乘的箭頭如:

  提醒同學(xué)把箭頭畫出來,把兩個加數(shù)“分別”與括號外的因數(shù)相乘,這樣盡量減少一些把一個加數(shù)乘掉的同學(xué)。

  三、多進(jìn)行分組練習(xí)

  一組:15×(8+4) (80+8)×125 (40+4)×25

  47×(100+1) 78×(200+2) (100-1)×125

  在練習(xí)上述題后,讓學(xué)生觀察括號里的數(shù)如果不運(yùn)用乘法分配律會變成怎樣的一個算式:

  15×12 88×125 44×25

  47×101 78×202 99×125

  這些算式我們?nèi)绾螌⒁粋因數(shù)拆成兩個數(shù)相加的形式,這兩個加數(shù)盡量要拆成整十整百或是與外面的數(shù)相乘能得整十整百的數(shù)。

  在讓學(xué)生在對乘法分配律基本公式的運(yùn)用掌握較好之后,再進(jìn)行第二組乘法分配律反方向運(yùn)用的形式。

  《乘法分配律》教學(xué)反思4

  教材分析:

  乘法分配律是北師大版小學(xué)數(shù)學(xué)四年級上冊第三單元最后一節(jié)的教學(xué)內(nèi)容。本課是在學(xué)生已經(jīng)學(xué)習(xí)掌握了乘法交換律、結(jié)合律,并能初步應(yīng)用這些定律進(jìn)行一些簡便計(jì)算的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。乘法分配律是本單元教學(xué)的一個重點(diǎn),也是本單元內(nèi)容的難點(diǎn),教材是按照發(fā)現(xiàn)問題--提出假設(shè)--舉例驗(yàn)證--歸納結(jié)論等層次進(jìn)行的。然而乘法分配律又不是單一的乘法運(yùn)算,還涉及到加法的運(yùn)算,是學(xué)生學(xué)習(xí)的難點(diǎn)。因此本節(jié)課不僅使學(xué)生學(xué)會什么是乘法分配律,更要讓學(xué)生經(jīng)歷探索規(guī)律的過程,進(jìn)而培養(yǎng)學(xué)生的分析、推理、抽象、概括的思維能力。

  1.上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了訂校服的教學(xué)情境,使學(xué)生解決非常熟悉的生活問題、

  2.在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點(diǎn),驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。

  3.本節(jié)課有一定的亮點(diǎn),但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。

  4.以后注意,學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣

  教學(xué)反思:

  乘法分配律是第三單元的.一個難點(diǎn)。在理解、掌握和運(yùn)用上都有一定難度。因此如何上好這一課,讓學(xué)生真正地理解乘法分配律,并在理解的基礎(chǔ)上運(yùn)用好它?我覺得要注重形式上的認(rèn)識,更要注重意義上的理解。因?yàn)閱螐男问缴先ビ涀〕朔ǚ峙渎墒怯芯窒扌缘,以后在運(yùn)用乘法分配律的時候,遇到一些變式如:99×24+24會變得難以解決。注重意義的理解,能讓學(xué)生從更高的層面上去理解乘法分配律,那么將來無論形式上怎么變化,學(xué)生都能輕松運(yùn)用乘法分配律。

  北師大版的教材注重學(xué)生的探索活動,在探索中讓學(xué)生自己去發(fā)現(xiàn)的規(guī)律,才能讓他們真正地理解。本課是“探索與發(fā)現(xiàn)”的第三節(jié)課了,學(xué)生已經(jīng)有了一定的探索能力。因此本課的設(shè)計(jì)完全圍繞著學(xué)生的自主活動在進(jìn)行。

  總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去發(fā)現(xiàn)規(guī)律,驗(yàn)證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。

  在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。

  《乘法分配律》教學(xué)反思5

  本節(jié)課主要讓學(xué)生充分感知并歸納乘法分配律,理解其意義。教學(xué)中,我從解決實(shí)際問題(買衣服)引入,通過交流兩種解法,把兩個算式寫成一個等式,并找出它們的聯(lián)系。讓學(xué)生初步感知乘法分配律的基礎(chǔ)上再讓學(xué)生舉出幾組類似的算式,通過計(jì)算得出等式。在充分感知的基礎(chǔ)上引導(dǎo)學(xué)生比較這幾組等式,發(fā)現(xiàn)有什么規(guī)律?這里我化了一些時間,我發(fā)現(xiàn)學(xué)生在用語言文字?jǐn)⑹龇矫嬗行├щy,新教材上也沒有要求,因此,只要學(xué)生意思說到即可,后來,我提了這樣一個問題,你能用自己喜歡的方式來表示你發(fā)現(xiàn)的規(guī)律嗎?學(xué)生立即活躍起來,紛紛用自己喜歡的方式來闡明自己發(fā)現(xiàn)的規(guī)律:有用字母的,有用符號的,大部分學(xué)生會說,沒問題。對于應(yīng)用這一乘法分配律進(jìn)行后面的練習(xí)還可以。如:書上第55頁的第5題,學(xué)生都想到用簡便方法去列式計(jì)算。整節(jié)課,學(xué)生還是學(xué)的比較輕松的。

  關(guān)于乘法分配律早在上學(xué)期和本冊教材的前幾個單元的練習(xí)題中就有所滲透,雖然在當(dāng)時沒有揭示,但學(xué)生已經(jīng)從乘法的意義角度初步進(jìn)行了感知,以及初步體會了它可以使計(jì)算簡便。今天的教學(xué)就建立在這樣的基礎(chǔ)之上,上午第一節(jié)課我在自己班上,后來第二節(jié)課去聽了一根木頭老師的課,現(xiàn)在進(jìn)行對比,談一談自己的感受:

  首先,值得向一根木頭老師學(xué)習(xí)的是,學(xué)生的預(yù)習(xí)工作很到位。課前,學(xué)生就已經(jīng)解決了“想想做做”第3、4題,學(xué)生通過解決第三題用兩種方法求長方形的周長,既鞏固了舊知,而且將原來的認(rèn)識提升了,從解決實(shí)際問題的角度進(jìn)一步感受了乘法分配律。而第4題通過計(jì)算比較,突現(xiàn)了乘法分配律可以使計(jì)算簡便,體現(xiàn)了應(yīng)用價值。我在課前沒有安排這樣的預(yù)習(xí),因此課上的時間比較倉促。

  其次,我在學(xué)生解決完例題的`問題后,還讓學(xué)生提了減法的問題,這樣做的目的是讓學(xué)生初步感受對于(a—b)×c=a×b—a×c這種類型的題也同樣適合,既擴(kuò)展了學(xué)生的知識面,同時又為明天學(xué)習(xí)簡便運(yùn)算鋪墊。

  最后,我覺得在指導(dǎo)學(xué)生在觀察比較65×5+45×5和(65+45)×5的聯(lián)系和區(qū)別時,可以指導(dǎo)學(xué)生從數(shù)和運(yùn)算符號兩個角度觀察,學(xué)生得出結(jié)論后,其實(shí)已經(jīng)感知到了算式的特點(diǎn),然后讓學(xué)生用自己的方式創(chuàng)造相同類型的等式,可以是數(shù)、字母、圖形的等,值得欣慰的是學(xué)生能用各種方式正確表示出來,然后再揭示數(shù)學(xué)語言,學(xué)生的認(rèn)知產(chǎn)生飛躍。

  不足的是,學(xué)生很難用自己的語言表達(dá)乘法分配律的含義,小組交流時,有些同寫還是充當(dāng)旁觀者的角色,有待于教師科學(xué)地引導(dǎo)。

  《乘法分配律》教學(xué)反思6

  ①1355+5587=55(13+87)=5513+5587

 、8(125+9)=8125+9

 、郏100-7)25=10025+725

  ④9947=(100-1)47=10047-1

 、35201=35(201-1)

 、79125=125(80-1)=12580+1251

 、79125=125(80-1)=12580-1

 、1252532=1258+425

 、88125=808125

 、24335=(245)33=10033

  學(xué)生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學(xué)中應(yīng)該注意什么呢?

  1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

  教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a(b+c)=ab+ac缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)3=23+73是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)3=23+73

  2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

  乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律的特征是兩個數(shù)的和乘一個數(shù)或兩個積的和。在練習(xí)題中(40+4)25與(404)25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25(8+4)和2584;25125254和25125+258;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

  3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

  如:12588;10189你能有幾種方法?12588①豎式計(jì)算②125811③125(80+8)④(100+25)88等等。10189①豎式計(jì)算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到用簡便計(jì)算法進(jìn)行計(jì)算成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)?算法的目的

  4、多練

  針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

  對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

  只有在理解的基礎(chǔ)上反復(fù)練習(xí),才能使孩子對于乘法分配律牢固掌握,我將在反思過程中制定出切實(shí)可行的計(jì)劃,盡快使孩子消化吸收。

  《乘法分配律》教學(xué)反思7

  乘法分配律是教學(xué)的難點(diǎn)也是重點(diǎn)。這節(jié)課采用從生活中的問題入手,利用學(xué)生感興趣的具體情境展開。這節(jié)課我力圖將教學(xué)生學(xué)會知識,變?yōu)橹笇?dǎo)學(xué)生會學(xué)知識,將重視結(jié)論的記憶變?yōu)橹匾晫W(xué)生獲取結(jié)論的體驗(yàn)和感悟,將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。學(xué)生經(jīng)歷了“觀察、初步發(fā)現(xiàn)、舉例驗(yàn)證、再觀察、發(fā)現(xiàn)規(guī)律、概括歸納”這樣一個知識形成過程。這樣不僅讓學(xué)生獲得了數(shù)學(xué)基礎(chǔ)知識和基本技能,而且更能培養(yǎng)學(xué)生主動探究、發(fā)現(xiàn)知識的能力;仡櫿麄教學(xué)過程,這節(jié)課的亮點(diǎn)體現(xiàn)在以下幾個方面:

  一、從身邊引入熟悉的生活問題,激趣探究

  我們在教學(xué)中要為學(xué)生創(chuàng)設(shè)大量生動、具體、鮮活的生活情境,讓學(xué)生感到數(shù)學(xué)就是從身邊的生活中來的,激發(fā)學(xué)生學(xué)習(xí)的熱情。在教學(xué)時,我先創(chuàng)設(shè)情景,提出問題:“一共有多少名學(xué)生參加這次植樹活動?”。讓學(xué)生根據(jù)提供的條件,用不同的方法解決,從而發(fā)現(xiàn)(4+2)×25=4×25+2×25這個等式。然后請學(xué)生觀察,這個等式兩邊的運(yùn)算順序,使學(xué)生初步感知“乘法分配律”。再讓學(xué)生“觀察這個等式左右兩邊的不同之處”,再次感知“乘法分配律”。我利用情景,讓學(xué)生充分的感知“乘法分配律”,為后來“乘法分配律”的探究提供了有力的保障。

  二、為學(xué)生提供了自己獨(dú)立探究的機(jī)會

  數(shù)學(xué)教學(xué)應(yīng)該是數(shù)學(xué)教學(xué)的.活動。傳統(tǒng)的教學(xué)活動往往只重視結(jié)論的記憶,而這節(jié)課我把學(xué)生的活動定位在感悟和體驗(yàn)上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn),去探索。尤其是在學(xué)生初步感悟到兩種算法相等關(guān)系的基礎(chǔ)上,繼續(xù)為學(xué)生創(chuàng)造一個思考的情景。我要求學(xué)生觀察得到的兩個等式,提出“你有什么發(fā)現(xiàn)?”。此時學(xué)生對“乘法分配律”已有了自己的一點(diǎn)點(diǎn)感知,我馬上要求學(xué)生模仿等式,自己再寫幾個類似的等式。使學(xué)生自己的模仿中,自然而然地完成猜測與驗(yàn)證,形成比較“模糊”的認(rèn)識。

  三、為學(xué)生的學(xué)習(xí)方式的轉(zhuǎn)變創(chuàng)設(shè)了條件

  模仿學(xué)習(xí),學(xué)生“知其然,而不知其所以然”,知識容易遺忘,而且不能靈活應(yīng)用。改變學(xué)生的學(xué)習(xí)方式,讓學(xué)生進(jìn)行探索性的學(xué)習(xí),不能是一句空話。在這節(jié)課上,我抓住學(xué)生的已有感知,立刻提出“觀察這一組等式,你能發(fā)現(xiàn)其中的奧秘嗎?”。這樣,給學(xué)生提供了豐富的感知材料和具有挑戰(zhàn)性的研究材料,提供猜測與驗(yàn)證,辨析與交流的空間,把學(xué)習(xí)的主動權(quán)力還給學(xué)生。學(xué)生的學(xué)習(xí)熱情高了,自然激起了探究的火花。學(xué)生的學(xué)習(xí)方式不再是單一的、枯燥的,整個教學(xué)過程都采用了讓學(xué)生觀察思考、自主探究、合作交流的學(xué)習(xí)方式。我想:只有改變學(xué)習(xí)方式,才能提高學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。

  《乘法分配律》教學(xué)反思8

  《乘法分配律》是整個四年級運(yùn)算定律中最最重要的一節(jié)。理解乘法分配律、并會很好運(yùn)用他很重要!所以這節(jié)課重點(diǎn)就是在于讓學(xué)生理解乘法分配律的意義。

  整堂課基本完成了教學(xué)目標(biāo),但在環(huán)節(jié)設(shè)置以及細(xì)節(jié)等方面存在很多問題。

  1、概念課親歷過程需精確、嚴(yán)密

  本節(jié)課是一節(jié)概念課,旨在學(xué)生通過操作整理式子(多余3)——觀察式子——猜測觀點(diǎn)——驗(yàn)證觀點(diǎn)——總結(jié)定理,這樣一個過程。如果后面沒有反例,就證明存在這種成立的可能。而在整節(jié)課程中,學(xué)生沒有明確的用具體數(shù)字驗(yàn)證它是成立的,所以推導(dǎo)出來的不具有說服力。可能會給學(xué)生一種不好的印象,猜想后就可以了,不需要驗(yàn)證、或者不需要反證來驗(yàn)證就可以了。所以概念怎么推到出來這個很重要。

  2、師生互動評判加強(qiáng)

  學(xué)生無論是回答好的還是不好的,對的還是不對的,都需要老師帶有評判性的語言,這樣對于學(xué)生的積極性都可以提高。同樣的對于典型的問題可以進(jìn)行當(dāng)堂解答,這都是課堂生成的一個過程,需要重視學(xué)生在整個課程的反映這個很重要。

  3、語言表達(dá)方面可以優(yōu)化

  在思維拓展的時候,本來應(yīng)該是“如果給你一把剪刀,你可以拼嗎?用最少的次數(shù)去剪,使它拼成一個長方形,你會剪嗎?拼有什么要求嗎?如果沒有相等的兩條邊,你可以創(chuàng)造嗎?”而在課堂上,表達(dá)的意思卻是:“如果給你一把剪刀,你可以拼嗎?拼有什么要求,如果沒有,你可以創(chuàng)造嗎?”結(jié)果導(dǎo)致最終在小組活動中,學(xué)生隨意亂剪,并不理解活動的意義。數(shù)學(xué)講究的是嚴(yán)密性以及邏輯性,所以要求要明確一些,引導(dǎo)性的語言要貼切。整個語言組織,如:相等的兩條表而不是相同的兩條邊

  4、注重細(xì)節(jié)

  在整個過程中有同學(xué)列出38×(547-347)和(547-347)×38這兩個算式,它都可以用乘法分配律來講,但同時兩者也是有差異的。課堂生成的東西需要注意,并且坐好預(yù)設(shè)。將38放到前面,可以避免出錯。這個小的'知識點(diǎn)也是需要去讓學(xué)生通過對比來理解的這很重要。方便他們積累避免錯誤。

  5、試教是一個課堂診斷的過程

  在上整堂課前,已經(jīng)去試教過3個班。雖然每個班情況都不一樣,但是試教就是跟孩子的磨合過程,試教過程中發(fā)現(xiàn)什么問題,再去改正過來,調(diào)整好。如果每個班都出現(xiàn)這樣的問題,說明課程設(shè)置不合理。需要對教案進(jìn)行修改。這也是為什么需要試教。希望在試教過程中,能夠反思,自己發(fā)現(xiàn)問題所在。

  總的來說,這個課從制作教案、試教、修改、正式教學(xué)過程中,感謝數(shù)學(xué)組尤其是師傅對我的指點(diǎn)以及磨煉。試教讓我明白了課件調(diào)整的重要性,一定要符合學(xué)生的認(rèn)知發(fā)展規(guī)律。讓我明白了數(shù)學(xué)語言是需要邏輯性,針對性以及嚴(yán)密性的。所以未來的路還很長,我還會再修改磨煉的。要相信好課是不斷磨出來的!

  《乘法分配律》教學(xué)反思9

  乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律。如何教學(xué)能使學(xué)生較好的理解乘法分配律的內(nèi)涵,并能正確的運(yùn)用定律進(jìn)行簡便運(yùn)算呢?我做了一下幾點(diǎn)嘗試。

  一、創(chuàng)設(shè)師生競賽,激發(fā)學(xué)習(xí)欲望。

  上課教師先出示:(1)8×(125+11) (2)(100+1)×23

 。3 )648×5+352×5

  老師和同學(xué)們做一個比賽,王老師口算,你們用計(jì)算器算,看看誰能獲。

  結(jié)果教師又快又對,學(xué)生都很奇怪,教師順勢導(dǎo)入:同學(xué)們都特別想知道在比賽過程中,學(xué)生用計(jì)算器都沒有老師口算得快的原因嗎?是因?yàn)槔蠋熡诌\(yùn)用了乘法的一個法寶,知道了乘法的又一個定律可以使運(yùn)算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。

  這樣的導(dǎo)入讓學(xué)生充滿了求知的欲望,激發(fā)了學(xué)習(xí)的熱情。

  二、設(shè)計(jì)思考問題,學(xué)生自主探究。

  出示例題后,學(xué)生獨(dú)立解答,然后教師出示思考問題,學(xué)生自主探究。

  討論:

  1、這兩種方法有什么不同?兩個算式的結(jié)果如何?用什么符號連接?

  2、那么等號連接的這兩個算式有什么特點(diǎn)和聯(lián)系呢?請同學(xué)們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。

  生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。

  整個教學(xué)過程通過學(xué)生觀察、比較、分析理解乘法分配律的含義,教師引導(dǎo)學(xué)生概括出乘法分配律的`內(nèi)容。

  三、練習(xí)有坡度,前后有呼應(yīng)。

  在本課的練習(xí)設(shè)計(jì)上,我力求有針對性,有坡度,同時也注意知識的延伸。練習(xí)的形式多樣,課本上的填空題解決以后,設(shè)計(jì)了判斷題和練習(xí)題,把學(xué)生易出錯的問題提前預(yù)設(shè)好,而且通過練習(xí)讓學(xué)生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學(xué)生對乘法分配律的內(nèi)容得到進(jìn)一步完整,也為后面利用乘法分配律進(jìn)行簡算打下伏筆。為了讓學(xué)生初步感受乘法分配律能使一些計(jì)算簡便,我特意把開始和老師比賽的題目讓學(xué)生運(yùn)用今天所學(xué)知識進(jìn)行計(jì)算,學(xué)生非常有興趣,在練習(xí)中培養(yǎng)了學(xué)生分析、推理、概括的思維能力。

  總之,在本堂課中新的教學(xué)理念有所體現(xiàn),是一節(jié)本色的數(shù)學(xué)課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設(shè)計(jì)不夠簡潔,還可以再做斟酌。實(shí)際分配律的揭示過程與教案設(shè)計(jì)順序有些出入,感覺效果沒有預(yù)想的好,上課時對于教案的熟悉程度還有待加強(qiáng)。

  《乘法分配律》教學(xué)反思10

  乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運(yùn)算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運(yùn)算。從某種程度上來說,其抽象程度要高一些,因此,對學(xué)生而言,難度偏大,如何使學(xué)生掌握得更好,記得更牢?我想學(xué)生自己獲得的知識要比灌輸?shù)脕淼挠浀酶巍R虼宋以谝婚_始設(shè)計(jì)了一個購物的情境,讓學(xué)生在一個寬松愉悅的環(huán)境中,走進(jìn)生活,開始學(xué)習(xí)新知。在教學(xué)過程中有坡度的讓學(xué)生在不斷的感悟、體驗(yàn)中理乘法分配律,從而自己概括出乘法分配律。我是這樣設(shè)計(jì):

  一、讓學(xué)生從生活實(shí)例去理解乘法分配律

  一共25個小組參加植樹活動,每組里8人負(fù)責(zé)挖坑和種樹,4人負(fù)責(zé)抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)椋?+6)個25更能凸顯出應(yīng)用乘法分配律后帶來的方便,也為乘法分配律的應(yīng)用打下伏筆和基礎(chǔ)。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學(xué)生理解帶來的困難。

  通過引入解決問題讓學(xué)生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。

  如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點(diǎn),兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點(diǎn)進(jìn)行分析。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會

  借助對同一實(shí)際問題的不同解決方法讓學(xué)生體會乘法分配律的合理性。這是生活中遇到過的,學(xué)生能夠理解兩個算式表達(dá)的意思,也能順利地解決兩個算式相等的問題。

  二、突破乘法分配律的教學(xué)難點(diǎn)

  讓學(xué)生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學(xué)生親歷規(guī)律形成的科學(xué)過程設(shè)計(jì)中,不著痕跡的讓學(xué)生不斷觀察、比較、猜想、驗(yàn)證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學(xué)思想和方法。

  相對于乘法運(yùn)算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復(fù)雜的,等式變形的能力是教學(xué)的難點(diǎn)。為了突破這個教學(xué)難點(diǎn),從生活中的實(shí)際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負(fù)責(zé),人負(fù)責(zé)。一共有多少同學(xué)參加這次植樹活動?

  學(xué)生主動去設(shè)計(jì)、解決,調(diào)動學(xué)生的積極性。讓學(xué)生根據(jù)自己的'想法,選擇自己喜歡的方案,開放給學(xué)生,發(fā)揮學(xué)生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,驗(yàn)證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點(diǎn)的活動中。

  在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

  當(dāng)然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。

  乘法分配律教學(xué)反思是必要的,所以老師們一定也要好好地去對待。不斷的反思,才可以促進(jìn)不斷的進(jìn)步。以上面的文章,希望與各位同行們共同進(jìn)步。

  《乘法分配律》教學(xué)反思11

  乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解與敘述的定律,是一節(jié)比較抽象的概念課。我根據(jù)教學(xué)內(nèi)容的特點(diǎn),為學(xué)生提供多種探究方法,激發(fā)學(xué)生的自主意識。

  具體設(shè)計(jì):先創(chuàng)設(shè)兔子吃蘿卜的情景,調(diào)動學(xué)生的學(xué)習(xí)積極性。

  通過買“老伯伯養(yǎng)了10只猴子,每只兔子早上吃4個蘿卜,晚上要吃3只蘿卜這些猴子一天共要吃掉多少個蘿卜?”列出兩種不同的式子,讓學(xué)生通過觀察兩種不同的計(jì)算方法也得到了相同的結(jié)果,這兩個算式也可用“=”連接。

  然后讓學(xué)生觀察這兩個等式的特點(diǎn),仿造上面的等式填空。

 。4+5)×25=(14+25)×5=(37+125)×8=。

  再讓學(xué)生觀察這幾組算式,等號左邊的算式有什么相同點(diǎn)?等號右邊的算式有什么相同點(diǎn)?等號左邊算式中的兩個加數(shù)與右邊算式中的什么數(shù)有關(guān)系?左邊算式中的一個因數(shù)與右邊算式中的哪個數(shù)有關(guān)系?使之讓學(xué)生從中感受了乘法分配律的模型。

  從而引出乘法分配律的概念:“兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變!庇米帜感问奖硎荆海╝+b)×c=a×c+b×c,他們確實(shí)能夠體會到兩個不同的算式具有相等的關(guān)系。

  第一步:通過資料獲取繼續(xù)研究的信息。

  雖然所得的信息很簡單,只是幾組具有相等關(guān)系的算式,但這是學(xué)生通過活動自己獲取的,學(xué)生對于它們感到熟悉和親切,用他們作為繼續(xù)研究的對象,能夠調(diào)動學(xué)生的參與意識。

  第二步:觀察算式,尋找規(guī)律。讓學(xué)生通過討論初步感知乘法分配律,并作出一種猜測:是不是所有符合這種形式的兩個算式都是相等的?此時,我不急于告訴學(xué)生答案,而是讓學(xué)生自己通過舉例加以驗(yàn)證。這里既培養(yǎng)了學(xué)生的猜測能力,又培養(yǎng)了學(xué)生驗(yàn)證猜測的能力。

  第三步:應(yīng)用規(guī)律,解決實(shí)際問題。通過對于實(shí)際問題的解決,進(jìn)一步拓寬乘法分配律。這一階段,既是學(xué)生鞏固和擴(kuò)大知識,又是吸收內(nèi)化知識的階段,同時還是開發(fā)學(xué)生創(chuàng)新思維的重要階段。

  本節(jié)課的'可取之處:

  1、為學(xué)生提供了充分的數(shù)學(xué)活動機(jī)會,把學(xué)生的活動定位在感悟和體驗(yàn)上,引導(dǎo)學(xué)生用數(shù)學(xué)思維方式去發(fā)現(xiàn)、去探索。

  2、使學(xué)生在辨析與爭論中,自然而然地完成猜測與驗(yàn)證,形成清晰的認(rèn)識,在學(xué)生舉例中使學(xué)生感到乘法分配律的一個重要因素,最后由特殊到一般總結(jié)字母公式。

  3、將模仿式的學(xué)習(xí)變?yōu)樘骄渴降膶W(xué)習(xí)。

  4、在本課的練習(xí)設(shè)計(jì)上,能力求有針對性,有坡度,同時也注意知識的延伸。

  本節(jié)課的不足之處:

  1、習(xí)題在安排上在充分理解《乘法分配律》的基礎(chǔ)上,可以再安排一些具有思考性的題目,如78×99+78=78×(99+1),為后面的簡便運(yùn)算作伏筆,這樣教學(xué)效果會更好。

  2、在數(shù)學(xué)術(shù)語上還得反復(fù)推敲,以達(dá)到準(zhǔn)確無誤。

  3、本堂課中新的教學(xué)理念有所體現(xiàn),但在具體的操作中還缺乏成熟的思考,對學(xué)生的積極性沒有充分調(diào)動起來。

  我會堅(jiān)持不斷學(xué)習(xí)理論知識,多聽課多向前輩們請教,切實(shí)提高業(yè)務(wù)能力。

  《乘法分配律》教學(xué)反思12

  教學(xué)過程:

  一、創(chuàng)境

  1、直接出示:師口述:張阿姨買5件夾克和5條褲子,一共要付多少元?你們能用兩種方法解答嗎?(獨(dú)立)指名板演

  2、組織交流:你是怎么想的?(先求什么,再求什么)

  比較:最后結(jié)果,你發(fā)現(xiàn)什么?

  說明:這樣的兩個算式可寫成一個等式

  3、出示課題運(yùn)算律

  今天,我們就來仔細(xì)研究這兩個算式,找出其中隱藏的秘密。

  二、探究:

  1、仔細(xì)觀察此算式,比較等號的兩邊有什么聯(lián)系?

  2、明確:左邊先算什么?再算什么?右邊先算什么?再算什么?

  3、根據(jù)觀察,你有什么猜想?是不是所有這樣的兩道算式間都有這樣聯(lián)系呢?

  列舉指名口答算式齊計(jì)算感受結(jié)果相等

  4、發(fā)現(xiàn)規(guī)律

  5、出示公式

  三、應(yīng)用深化

  1、完成1,填一填

  2、完成2

  3、完成4

  老師出一道算式,請同學(xué)們根據(jù)乘法分配律,說出算式,比比誰反應(yīng)最快。

  4、完成3:你能用兩種不同方法計(jì)算長方形菜地周長嗎?

  5、完成5

  四、回顧

  通過今天的學(xué)習(xí)你有什么收獲?

  五、作業(yè)

  對自主探究與有效生成幾點(diǎn)嘗試

  ——《乘法分配律》教學(xué)案例與反思

  一、回顧

  本課對乘法分配律的教學(xué),結(jié)合具體的問題情境,幫助學(xué)生理解兩種算法之間的聯(lián)系與區(qū)別,即先算出一套的和再乘5套,與先分別算5件及服和5條褲子的總價再相加,它們的結(jié)果相等;再通過例舉驗(yàn)證,觀察比較,歸納出乘法分配律;最后進(jìn)行多層次的練習(xí),進(jìn)一步提升孩子們對乘法分配律理解與應(yīng)用。

  二、反思

  新課程如春風(fēng)化雨,走進(jìn)了師生的生活。倡導(dǎo)自主探究,關(guān)注有效生成,成為新課程改革永恒的主題。在追求有效的教學(xué)中我作出了以下幾點(diǎn)的嘗試:

  1、從具體的問題情境出發(fā),有利于學(xué)生的自主探索

  對于5套運(yùn)動服一共多少元,這樣的問題對于大多數(shù)學(xué)生來說是駕輕就熟的。結(jié)合熟悉的問題情境,便于學(xué)生理解兩種算法間的聯(lián)系與區(qū)別,

  為后敘對乘法分配律的成功探究理好伏筆。最近發(fā)展區(qū)理論告訴我們,只有找準(zhǔn)了學(xué)生的知識起點(diǎn),才能有效的教學(xué),熟悉的問題情境面向全體學(xué)生,只有全面參與的探究,才是真正的自主有效的'探究。

  2、鼓勵學(xué)生大膽猜想,在驗(yàn)證過程中形成共識。

  數(shù)學(xué)的猜想是在一系列的實(shí)驗(yàn)、觀察、歸納、類比的基礎(chǔ)上獲得的,數(shù)學(xué)活動脫離了猜想就會顯得沒有意義。本課教學(xué)乘法分配律的探究過程分為幾個層次:(1)啟發(fā)猜想。在解決實(shí)際問題的基礎(chǔ)上通過比較,引導(dǎo)學(xué)生的發(fā)散性思維,提出猜想。在具體的問題情境中,讓學(xué)生插上想象的翅膀,激起創(chuàng)新的火花。(2)例舉驗(yàn)證。讓學(xué)生圍繞猜想,以小組探究為主要形式,以獨(dú)立思考例舉算式與合作學(xué)習(xí)有機(jī)結(jié)合,算出得數(shù)發(fā)現(xiàn)兩種算式結(jié)果相等,在相互交流中,形成對乘法分配律的共識。在交流、合作中,使學(xué)生真正成為學(xué)習(xí)的主人。

  3、設(shè)計(jì)多層次練習(xí),在層層深入中啟迪學(xué)生的智慧

  在形成對乘法分配律的認(rèn)識后,分幾個層次運(yùn)用知識訓(xùn)練,首先是基礎(chǔ)訓(xùn)練,書本55頁第1、2、3題練習(xí)從正的兩個角度進(jìn)行,使學(xué)生明確乘法分配律是互逆的。從而達(dá)到靈活運(yùn)用真正理解并掌握的目標(biāo)。其次變式練習(xí),我將書本55頁第4題組練習(xí)設(shè)計(jì)成游戲的形式呈現(xiàn),讓學(xué)生在國松的氛圍中,發(fā)現(xiàn)用乘法分配律可使計(jì)算方便。最后拓展延伸啟迪智慧。練習(xí)中再次結(jié)合具體的問題情境,通過觀察與比較體會到乘法分配律不僅適用于一個數(shù)兩個數(shù)的和,也適用于一個數(shù)乘兩個數(shù)的差。在這層層深入的練習(xí)中面向了全體學(xué)生,使每個孩子有所進(jìn)步,有所發(fā)現(xiàn),有所啟迪,有所收獲。

  新課改的腳步在前行,新課扆的理念在深入。作為教師只有不斷內(nèi)化新課程理念,才能使自己的教學(xué)面向全體,促使學(xué)生真正的自主探究,成為學(xué)習(xí)的主人。

  《乘法分配律》教學(xué)反思13

  乘法分配律是在學(xué)生學(xué)習(xí)了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)生較難理解和敘述的定律。因此在本節(jié)課教學(xué)設(shè)計(jì)上,我結(jié)合新課標(biāo)的一些基本理念和本地區(qū)的具體情況,注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識和實(shí)際生活緊密聯(lián)系起來,讓學(xué)生在不斷的感悟和體驗(yàn)中學(xué)習(xí)知識。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的!睌(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力。”而我們過去的教學(xué)往往比較重視解決書上的數(shù)學(xué)問題,學(xué)生一旦遇到實(shí)際問題就束手無策。因此,在上課的一開始,我創(chuàng)造性地使用教材,創(chuàng)設(shè)了一個肯德基餐廳用餐的情境,使學(xué)生置身于非常熟悉的生活情境中,極大地激發(fā)了學(xué)生的學(xué)習(xí)欲望。學(xué)生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學(xué)生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎(chǔ)上,我并沒有急于讓學(xué)生說出規(guī)律,而是繼續(xù)為學(xué)生提供具有挑戰(zhàn)性的研究機(jī)會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學(xué)生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點(diǎn),驗(yàn)證其內(nèi)在的.規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學(xué)生的猜想能力,又培養(yǎng)了學(xué)生驗(yàn)證猜想的能力。學(xué)生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗(yàn)證、完善,主體性得到了充分的發(fā)揮。

  與此同時,我還十分注重合作與交流,多向互動。倡導(dǎo)課堂教學(xué)的動態(tài)生成是新課程標(biāo)準(zhǔn)的重要理念。在數(shù)學(xué)學(xué)習(xí)中,每個學(xué)生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學(xué)生在數(shù)學(xué)學(xué)習(xí)中都得到發(fā)展,我在本課教學(xué)中立足通過生生、師生之間多向互動,特別是通過學(xué)生之間的互相啟發(fā)與補(bǔ)充來培養(yǎng)他們的合作意識,實(shí)現(xiàn)對“乘法分配律”的主動建構(gòu)。學(xué)生在這樣一個開放的環(huán)境中博采眾長,共同經(jīng)歷猜想、驗(yàn)證、歸納知識的形成過程,共同體驗(yàn)成功的快樂。既培養(yǎng)了學(xué)生的問題意識,又拓寬了學(xué)生思維,學(xué)生也學(xué)得積極主動。

  應(yīng)用規(guī)律,解決實(shí)際問題是數(shù)學(xué)學(xué)習(xí)的目的所在。在練習(xí)題型的設(shè)計(jì)上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機(jī)地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學(xué)生逐步加深認(rèn)識,在弄清算理的基礎(chǔ)上,學(xué)生能根據(jù)題目的特點(diǎn),靈活地運(yùn)用所學(xué)知識進(jìn)行簡便運(yùn)算和拓展練習(xí)。不僅要求學(xué)生會順向應(yīng)用乘法分配律,而且還要求學(xué)生會反向應(yīng)用。通過正反應(yīng)用的練習(xí),加深學(xué)生對乘法分配律的理解。從課堂反饋來看,學(xué)生熱情較高,能夠?qū)W以致用。學(xué)生通過自己的努力以及和同學(xué)的交流合作,解題速度和準(zhǔn)確性都很理想。只有這樣才能真正提高學(xué)生的計(jì)算能力。

  本節(jié)課有一定的亮點(diǎn),但其中出現(xiàn)了不少問題:學(xué)生參與的積極性沒有預(yù)想中那么高。可能與我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學(xué)生不太感興趣。但學(xué)生不感興趣的材料,教師應(yīng)該想辦法使呈現(xiàn)的這個材料變得能讓學(xué)生感興趣。另外,在回答問題時,個別學(xué)生的語言不夠流利、準(zhǔn)確。對乘法分配律的敘述稍顯羅嗦,不夠堅(jiān)定、自信。在這方面有待今后加強(qiáng)訓(xùn)練和提高

  《乘法分配律》教學(xué)反思14

  《乘法分配律》是人教版四年級第三單元的內(nèi)容,學(xué)生已經(jīng)學(xué)過了加法交換律和結(jié)合律、乘法交換律和結(jié)合律,因此總以為學(xué)生對這一部分的知識并不陌生,就簡單地設(shè)計(jì)了復(fù)習(xí),回顧學(xué)過的運(yùn)算律,再讓學(xué)生發(fā)現(xiàn)運(yùn)算律在簡便計(jì)算中的運(yùn)用,接著就出示了新課的例題,讓學(xué)生從例題中尋找乘法分配律的規(guī)律,再通過舉例,比較發(fā)現(xiàn)乘法分配律并用字母表示出來,基本完成本節(jié)課的新授,最后通過鞏固練習(xí)讓學(xué)生認(rèn)識乘法分配律并在計(jì)算和實(shí)際生活問題中的運(yùn)用。但上完課,發(fā)現(xiàn)課堂出現(xiàn)了很多的問題,學(xué)生對乘法分配律和乘法結(jié)合律的`混淆。那么在教學(xué)中應(yīng)該注意什么呢?

  1、乘法分配律的教學(xué)既要注重它的外形結(jié)構(gòu)特點(diǎn),也要同時注重其內(nèi)涵。

  教學(xué)時我們往往注重等式兩邊的外形特點(diǎn),即a×(b+c)=a×b+a×c。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3

  2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點(diǎn),多進(jìn)行對比練習(xí)。

  乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的和。在練習(xí)題中(40+4)×25與(40×4)×25這種題學(xué)生特別容易出錯。為了更好地掌握,可多進(jìn)行一些對比練習(xí),如進(jìn)行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運(yùn)算定律?應(yīng)用什么運(yùn)算定律可以使計(jì)算簡便?為什么要這樣算?

  3、讓學(xué)生進(jìn)行一題多解的練習(xí),加深對乘法結(jié)合律和乘法分配律的理解

  如:125×88;101×89你能有幾種方法?125×88①豎式計(jì)算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①豎式計(jì)算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.對于不同解法,引導(dǎo)學(xué)生進(jìn)行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達(dá)到“用簡便計(jì)算法進(jìn)行計(jì)算”成為學(xué)生一種自主行為,并能根據(jù)題目的特色靈活選擇適當(dāng)?shù)乃惴ǖ哪康?/p>

  4、多練

  針對題目多次練習(xí)。練習(xí)時注意練習(xí)量和時間的安排。剛開始可以天天練習(xí),過段時間以后可以一兩天練習(xí)一次,再到一周練習(xí)一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。

  對于比較特殊的題目可以間斷性練習(xí),對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

  這樣一來,讓學(xué)生親歷觀察、歸納、猜測驗(yàn)證推理等探究發(fā)現(xiàn)的全過程,使學(xué)生不僅發(fā)現(xiàn)了乘法分配律的知識的內(nèi)含,而且學(xué)習(xí)了科學(xué)的探究的方法,數(shù)學(xué)思維能力也得到了發(fā)展。

  《乘法分配律》教學(xué)反思15

  《乘法分配律的運(yùn)用》教學(xué)設(shè)計(jì)及反思

  教學(xué)目標(biāo)

  (一)使學(xué)生學(xué)會用乘法分配律進(jìn)行簡算,提高計(jì)算能力.

  (二)培養(yǎng)學(xué)生靈活運(yùn)用乘法運(yùn)算定律進(jìn)行計(jì)算的習(xí)慣.

  教學(xué)重點(diǎn)和難點(diǎn)

  能比較熟練地應(yīng)用運(yùn)算定律進(jìn)行簡算是教學(xué)的重點(diǎn);反向應(yīng)用乘法分配律是學(xué)習(xí)的難點(diǎn). 教學(xué)過程設(shè)計(jì)

  (一)復(fù)習(xí)準(zhǔn)備

  1.口算:

  (二)學(xué)習(xí)新課

  我們已經(jīng)學(xué)過乘法分配律,今天繼續(xù)研究怎樣應(yīng)用乘法分配律使計(jì)算簡便.(板書:乘法分配律的應(yīng)用)

  1.創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)積極性.

  出示102×( ).

  請同學(xué)任意填上一個兩位數(shù),老師可以迅速說出它的得數(shù),而不用筆算.

  2.教學(xué)例6:用簡便方法計(jì)算.

  (1)計(jì)算102×43.

  這是一道兩位數(shù)乘三位數(shù)的乘法,用筆算比較麻煩.想一想,能否把算式改成乘法分配律的形式,然后應(yīng)用運(yùn)算定律進(jìn)行簡算?

  經(jīng)過討論后,可能出現(xiàn)兩種情況:一種是把原式改寫為(100+2)×43,然后按乘法分配律進(jìn)行計(jì)算;一種是把原式改寫成102×(40+3).不要簡單的否定,可以讓學(xué)生用兩種方法都做一

  做,對比一下,找出哪種方法簡便.

  在此基礎(chǔ)上引導(dǎo)學(xué)生觀察這類題目的特點(diǎn),以及怎樣應(yīng)用乘法分配律,從而使學(xué)生明確:“兩個數(shù)相乘,把其中一個比較接近整十、整百、整千的數(shù)改寫成一個整十、整百、整千的數(shù)與一個數(shù)的和,再應(yīng)用乘法分配律可以使計(jì)算簡便.

  (2)計(jì)算102×24.

  訂正時說明怎樣簡算的?根據(jù)是什么.

  (3)計(jì)算9×37+9×63.

  啟發(fā)提問:

 、龠@類題目的結(jié)構(gòu)形式是怎樣的?有什么特點(diǎn)?

  ②根據(jù)乘法分配律,可以把原式改寫成什么形式?這樣算為什么簡便?

  在學(xué)生充分討論的基礎(chǔ)上,師板書:

  提問:這題能簡算嗎?什么地方錯了?應(yīng)怎樣改?

  啟發(fā)學(xué)生明確:題里兩個乘式?jīng)]有相同的因數(shù).應(yīng)該有一個相同的因數(shù),另外兩個因數(shù)加起來應(yīng)是能湊成整十、整百、整千的數(shù).

  2.根據(jù)乘法分配律把相等的式子用“=”連接起來.

  討論:2,3兩題為什么不相等?要使等號兩邊式子相等、符合乘法分配律的形式,應(yīng)該改哪個地方?

  在討論基礎(chǔ)上得出:

  第2題,如果左邊算式不變,右邊算式應(yīng)改為35×12+45×12,使兩個加數(shù)分別與同一個數(shù)相乘;如果右邊算式不變,兩個積里有相同的因數(shù)45,把相同的因數(shù)提到括號外面,兩個不同的因數(shù)就是兩個加數(shù),改為(35+12)×45.

  第3題右邊兩個積里相同的因數(shù)是4,不同的因數(shù)是11和25,應(yīng)改為(11+25)×4.因此

  要特別注意:括號里的每一個加數(shù)都要同括號外面的`數(shù)相乘;反過來,必須是兩個積里有相同的因數(shù),才能把相同的因數(shù)提到括號外面.而三個數(shù)連乘則是可以改變運(yùn)算順序,它是乘法結(jié)合律.必須要掌握這兩個運(yùn)算定律的區(qū)別.

  (四)作業(yè)

  練習(xí)十四第5~10題.

  教學(xué)反思:本節(jié)課從學(xué)生實(shí)際出發(fā),創(chuàng)設(shè)了具體的生活情境,引導(dǎo)學(xué)生開展觀察、猜想、舉例驗(yàn)證、交流等活動,從激活學(xué)生已有的知識經(jīng)驗(yàn)和探究欲望入手,引導(dǎo)學(xué)生主動參與數(shù)學(xué)的學(xué)習(xí)過程,從而發(fā)展學(xué)生數(shù)學(xué)思維數(shù)學(xué)能力,在學(xué)習(xí)過程中學(xué)會學(xué)習(xí),學(xué)會與人交流合作。新理念還體現(xiàn)不夠,學(xué)生的積極性沒有充分調(diào)動起來。

  《乘法分配律》教學(xué)反思16

  小學(xué)階段的“簡便計(jì)算”是“數(shù)的運(yùn)算”的重要組成部分!墩麛(shù)運(yùn)算定律應(yīng)用到小數(shù)》是建立在學(xué)生已經(jīng)掌握整數(shù)運(yùn)算定律、熟練計(jì)算整數(shù)簡便計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。教學(xué)后,一些學(xué)生的作業(yè)出現(xiàn)了不同類型的錯誤。仔細(xì)分析,其中有許多值得我們?nèi)シ此肌?/p>

  一、出現(xiàn)的問題

  案例典型錯題:1.25×3.2

  生1:1.25×3.2=1.25×(3+0.2)=1.25×3+0.2=3.75+2=5. 75

  生2:1.25×3.2=1.25×(4×0.8)=(1.25×4)×(1.25×0.8)= 5×0.1=0.5

  分析從這些問題中不難發(fā)現(xiàn)學(xué)生對運(yùn)算定律的理解存在著一些不足。生1和生2混淆了乘法分配律和乘法結(jié)合律。到底在什么樣的算式該用乘法結(jié)合律或用乘法分配律,他們并不能肯定,有的時候通常是靠“蒙”。

  反思在一些學(xué)生的知識結(jié)構(gòu)中,運(yùn)算定律只是簡單的知識儲備,而在應(yīng)用運(yùn)算定律進(jìn)行靈活計(jì)算時則缺乏足夠的自覺。究其原因,跟平時乘法運(yùn)算定律的教學(xué)脫不了關(guān)系。

  1.教學(xué)觀念重技能傳授,輕算理剖析。簡便計(jì)算的教學(xué),教師往往過分偏重于簡單模式化的技能訓(xùn)練,而忽視運(yùn)算定律的算理分析,致使部分學(xué)生死記硬背、機(jī)械套用運(yùn)算定律。這樣的教學(xué)過程,老師強(qiáng)調(diào)從計(jì)算入手,得出乘法分配律,但是學(xué)生并不知道為什么會成立乘法分配律。學(xué)生只關(guān)注到乘法分配律應(yīng)用到算式中的簡便功能,卻忽視了乘法分配律的意義分析,不利于學(xué)生今后對知識的運(yùn)用。

  2.教學(xué)方法重記憶積累,輕意義理解。教學(xué)過程中常會出現(xiàn)這些現(xiàn)象:教師讓學(xué)生背誦運(yùn)算定律的公式,但是對算理卻不作要求。當(dāng)學(xué)生出現(xiàn)混淆運(yùn)算定律的時候,教師卻簡單地從公式入手,告訴學(xué)生括號里是乘號時不能運(yùn)用乘法分配律,只能當(dāng)括號里是加法或減法時才能用乘法分配律。這些提醒也許在一定的`時間內(nèi)會起到作用,但學(xué)生終究缺乏對運(yùn)算定律的真正理解。此時應(yīng)從乘法結(jié)合律和乘法分配律的意義入手,通過具體的情境讓學(xué)生進(jìn)行理解,也可以讓學(xué)生對這兩種運(yùn)算定律進(jìn)行比較,充分地理解乘法結(jié)合律及乘法分配律的意義,自主建構(gòu)起知識體系。

  二、教學(xué)中應(yīng)注意的事項(xiàng)

  1.掌握計(jì)算方法的學(xué)習(xí)起點(diǎn)。對于乘法分配律,其實(shí)早在之前的學(xué)習(xí)中就有接觸,只是我們的教學(xué)中沒能單獨(dú)把它提出來轉(zhuǎn)化為學(xué)生的認(rèn)識。如口算兩位數(shù)乘一位數(shù)中的“13×2=?”時,大部分學(xué)生都會計(jì)算。而且當(dāng)時的方法就是先算個位上的3乘2等于6,再算十位上的1乘2等于20,20加6得26。如果把它的口算過程寫下來就是:13×2=10×2+3×2=20+6=26。學(xué)生能夠理解題目的意圖是將13分解成10和3的和。假如能把一個數(shù)分解成兩個數(shù)的和,同樣也能分解成兩個數(shù)的差、兩個數(shù)的積。這些題目能幫助我們解決類似三位數(shù)乘兩位數(shù)的簡便計(jì)算。準(zhǔn)確把握學(xué)生的學(xué)習(xí)起點(diǎn),架構(gòu)起新知識和舊知識的橋梁,就為理解乘法分配律奠定了基礎(chǔ)。

  2.重現(xiàn)運(yùn)算定律的意義背景。乘法分配律是一種抽象的數(shù)學(xué)模型,它與現(xiàn)實(shí)生活有著密切的聯(lián)系。在小學(xué)階段,大多能找到與之完全相符的生活原型。教材在內(nèi)容呈現(xiàn)上提供了很多豐富的生活素材,這不僅有利于學(xué)生自助抽象構(gòu)建乘法分配律模型,也為豐富模型內(nèi)涵提供了認(rèn)知的有利條件。

  《乘法分配律》教學(xué)反思17

  《乘法分配律》一課是四年級上冊第四單元的教學(xué)內(nèi)容,它相對于加法交換律、結(jié)合律,乘法交換律和結(jié)合律來說會比較抽象,學(xué)生較難于理解。因此把本課的教學(xué)重點(diǎn)定位為“探索并發(fā)現(xiàn)乘法分配律,理解乘法分配律的意義”,讓學(xué)生經(jīng)歷“觀察算式——仿寫算式——解釋規(guī)律——應(yīng)用規(guī)律”的過程。

  一、比賽導(dǎo)入 激發(fā)探究欲望

  課前創(chuàng)設(shè)比賽情境:老師能很快說出下面幾道題的得數(shù),你信嗎?不信的同學(xué)敢跟我比一比嗎?(出示: 28×70+72×70 (125+10)×8 34×101)在我既對又快的說出結(jié)果時,孩子們都很驚訝,于是我因勢利導(dǎo):剛才的比賽老師算得快,是因?yàn)槔蠋熡幸粋取勝的秘訣,它可以使計(jì)算簡便,你們想知道嗎?學(xué)完這節(jié)課,你就能發(fā)現(xiàn)其中的秘密。學(xué)生個個躍躍欲試,瞬間充滿探究的欲望,很好地激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  二、自主探索 發(fā)現(xiàn)規(guī)律

  在解決“一共貼了多少塊磁磚?”中,學(xué)生列出了四個算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在讓學(xué)生觀察四個算式之后,先引導(dǎo)學(xué)生將四個算式進(jìn)行分類并說明分類的`標(biāo)準(zhǔn)。通過這個環(huán)節(jié),學(xué)生對于相等的兩個算式的特征有了進(jìn)一步的了解,知道將3×10+5×10和(3+5)×10分為一類,將4×8+6×8和(4+6)×8分為一類,是因?yàn)樗鼈兊臄?shù)字都一樣,都是由3、5、10組成或是由4、6、8組成的,了解乘法分配律中有3個數(shù);如將3×10+5×10和將4×8+6×8分一類,將(3+5)×10和(4+6)×8分為一類的,則從中明白一邊都是兩個積相加,另一邊則是兩個數(shù)的和與一個數(shù)相乘。通過這個分類活動,讓學(xué)生自主發(fā)現(xiàn)規(guī)律,為理解乘法分配律做了很好的鋪墊。接著再讓學(xué)生仿寫算式,總結(jié)規(guī)律并解釋規(guī)律,最后再應(yīng)用規(guī)律揭示課前比賽中老師獲勝的奧秘。

  三、錯因分析 防患未然

  以往的教學(xué)經(jīng)驗(yàn)告訴我,學(xué)生對于乘法分配律的運(yùn)用經(jīng)常出錯,也很容易與結(jié)合律混在一起。為了防患于未然,在教學(xué)中創(chuàng)設(shè)了“小馬虎這樣做,你同意嗎?

  (1)(6+30)×7 = 7×6+7×30

  (2) 25×(4+60)= 25×4+60

  (3) 16×5×8 = 16×5+16×8

  (4) 15×3+15×7 = (15+15)×(3+7)”讓學(xué)生進(jìn)行分析、判斷并修正。特別是第3題,讓學(xué)生對比乘法分配律和乘法結(jié)合律的數(shù)學(xué)模型,找出其中的區(qū)別,加以比較,從而發(fā)現(xiàn)模型左邊乘法結(jié)合律是兩個數(shù)的積,而乘法分配律是兩個數(shù)的和,而模型右邊乘法結(jié)合律是連乘的形式,而乘法分配律是兩個積相加的形式。這樣對比,加深對乘法分配律模型的認(rèn)識和對其意義的理解。分析錯因后,還不忘讓學(xué)生說說:“你想對小馬虎說什么?”來提醒告誡學(xué)生,除了要養(yǎng)成認(rèn)真細(xì)心的習(xí)慣外,還要運(yùn)用好乘法分配律,注意分配律與結(jié)合律的區(qū)別,將錯誤扼制在搖籃里。

  不足之處:雖然學(xué)生對于乘法分配律的理解比較到位,較好地達(dá)成了教學(xué)目標(biāo),但如能進(jìn)行適時拓展,讓學(xué)生通過“兩個數(shù)的和與一個數(shù)相乘來聯(lián)想到兩個數(shù)的差與一個數(shù)相乘,兩個數(shù)的和除以一個數(shù)及兩個數(shù)的差除以一個數(shù)是否都可以應(yīng)用乘法分配律這個數(shù)學(xué)模型?”會使課堂更豐滿,更有深度。

  《乘法分配律》教學(xué)反思18

  乘法分配律是人教版四年級數(shù)學(xué)下冊的內(nèi)容,是一節(jié)比較抽象的概念課,是在學(xué)生學(xué)習(xí)了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎(chǔ)上教學(xué)的。乘法分配律也是學(xué)習(xí)這幾個定律中的難點(diǎn)。因此,對于乘法分配律的教學(xué),我沒有把重點(diǎn)放在數(shù)學(xué)語言的表達(dá)上,而是把重點(diǎn)放在讓學(xué)生通過多種方法的計(jì)算去完整地感知,對所列算式進(jìn)行觀察、比較和歸納,大膽提出自己的猜想并舉例進(jìn)行驗(yàn)證。

  所以,本課的教學(xué)目標(biāo),我定位在:

 。1)從學(xué)生已有生活經(jīng)驗(yàn)出發(fā),通過觀察、類比、歸納、驗(yàn)證、運(yùn)用等方法深化和豐富對乘法分配律的認(rèn)識。

  (2)滲透“由特殊到一般,再由一般到特殊”的認(rèn)識事物的方法,培養(yǎng)學(xué)生獨(dú)立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學(xué)的應(yīng)用意識。

  本單元教材的一個鮮明特點(diǎn)是,不再僅僅給出一些數(shù)值計(jì)算的實(shí)例,讓學(xué)生通過計(jì)算,發(fā)現(xiàn)規(guī)律,而是結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會運(yùn)算定律的現(xiàn)實(shí)背景。這樣便于學(xué)生依托已有的知識經(jīng)驗(yàn),分析比較不同的解決問題的方法,引出運(yùn)算定律。

  教材提供了這樣一個主體圖:春季里,同學(xué)們開展植樹活動,一共有25個小組,每組里4人負(fù)責(zé)挖坑、種樹,2人負(fù)責(zé)抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學(xué)生會用兩種不同的方法分別列出算式,接著通過計(jì)算發(fā)現(xiàn),兩個算式可以用“=”連接,即25×(4+2)=25×4+25×2。我將其首先呈現(xiàn)給學(xué)生,目的是結(jié)合學(xué)生熟悉的問題情境,幫助學(xué)生體會運(yùn)算定律的.現(xiàn)實(shí)背景。

  接著設(shè)計(jì)“懸念”,拋出四組題目,把學(xué)生引到“兩算式的結(jié)果相等”的情況中來。先請學(xué)生猜想,而后驗(yàn)證,再請學(xué)生編題,讓每一個學(xué)生都不由自主地參與到研究中來。在編題過程中,很多學(xué)生都交出了正確的“答卷”,增強(qiáng)了他們學(xué)習(xí)的自信心和繼續(xù)研究的欲望。接著,請同學(xué)在生活中尋找驗(yàn)證的方法,以四人小組為研究單位,學(xué)生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學(xué)生之間進(jìn)行思維交流,激發(fā)學(xué)生希望獲得成功的動機(jī)。

  通過實(shí)踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進(jìn)行合作,學(xué)會了獨(dú)立思考,學(xué)會了像數(shù)學(xué)家一樣進(jìn)行研究、發(fā)現(xiàn)!這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學(xué)習(xí)習(xí)慣,會讓孩子一生受益?v觀教學(xué)過程,學(xué)生學(xué)得輕松,學(xué)得主動。

  我通過這節(jié)課的教學(xué)感受到:認(rèn)真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學(xué)生思維的靈活性,提供了更廣闊的空間。

  《乘法分配律》教學(xué)反思19

  義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(北京師范大學(xué)出版社)五年級下冊數(shù)學(xué)第81~82頁《分?jǐn)?shù)混合運(yùn)算(二)》中,關(guān)于“整數(shù)的運(yùn)算律在分?jǐn)?shù)的運(yùn)算中同樣適用”這一教學(xué)內(nèi)容,在課堂教學(xué)中,為了充分發(fā)揮學(xué)生學(xué)習(xí)的主體性和積極性,讓學(xué)生在學(xué)習(xí)新知識的過程中能把新舊知識結(jié)合起來,我在課堂教學(xué)中,主要做到如下幾點(diǎn):

  一、提出簡單問題,讓學(xué)生運(yùn)用已學(xué)知識加以解決

  在復(fù)習(xí)中,出示整數(shù)乘法的簡算練習(xí):

  25×17×4 125×32×25 53×69+47×69 101×85

  通過復(fù)習(xí),引導(dǎo)學(xué)生得出已學(xué)習(xí)過的整數(shù)乘法運(yùn)算定律,并板書:乘法交換律:a×b=b×a

  乘法結(jié)合律:a×b×c=a×(b×c)

  乘法分配律:(a+b)×c=a×b+b×c

  二、利用數(shù)學(xué)相關(guān)信息,引導(dǎo)學(xué)生主動參與數(shù)學(xué)學(xué)習(xí)活動,提高學(xué)生運(yùn)算能力

  《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“運(yùn)算能力主要是指能夠根據(jù)法則和運(yùn)算律正確地進(jìn)行運(yùn)算的能力。培養(yǎng)運(yùn)算能力有助于學(xué)生理解運(yùn)算的算理,尋求合理簡潔的運(yùn)算途徑解決問題!睋(jù)此,我在導(dǎo)入新課后出示如下嘗試題讓學(xué)生練習(xí):

  56×17×35 59×14+49×14

  因?yàn)閷W(xué)生在復(fù)習(xí)中已經(jīng)熟悉了整數(shù)乘法運(yùn)算定律,所以在嘗試練習(xí)中大部分學(xué)生都能大膽運(yùn)用整數(shù)乘法運(yùn)算定律來解決嘗試題,但也有一小部分學(xué)生運(yùn)用四則混合運(yùn)算順序來算出答案。我根據(jù)練習(xí)的實(shí)際情況,每道題各讓4名學(xué)生在黑板上板演(其中2名學(xué)生用簡算、2名學(xué)生按運(yùn)算順序算)。然后讓學(xué)生觀察、比較、討論異同,引導(dǎo)學(xué)生加以概括,得到“乘法的運(yùn)算定律在分?jǐn)?shù)的運(yùn)算中同樣適用”這一結(jié)論。此時,我再適當(dāng)引導(dǎo),讓學(xué)生明白:在計(jì)算中,我們學(xué)習(xí)過的加法運(yùn)算律、乘法運(yùn)算律等“整數(shù)的運(yùn)算律在分?jǐn)?shù)的運(yùn)算中同樣適用”這一教學(xué)重點(diǎn);接著,再引導(dǎo)學(xué)生概括得出:連減的.性質(zhì)、連除的性質(zhì)等“整數(shù)的運(yùn)算性質(zhì)在分?jǐn)?shù)的運(yùn)算中同樣適用”這一延伸的知識內(nèi)容。

  三、因勢利導(dǎo)、適時調(diào)控,努力營造師生互動、生生互動、生動活潑的課堂氛圍,形成有效的學(xué)習(xí)活動

  數(shù)學(xué)教育家波利亞曾經(jīng)說過:“數(shù)學(xué)教師的首要責(zé)任是盡其一切可能,來發(fā)展學(xué)生解決問題的能力!痹谛抡n教學(xué)以后,我趁熱打鐵,在鞏固練習(xí)中出示如下練習(xí)題:

  823-(23+47)517×932×3415

 。58+712)×48 86×8485

  上述四道題,前三道題大部分學(xué)生都能根據(jù)已學(xué)知識用運(yùn)算律來解答,但對于86×8485,很多學(xué)生都認(rèn)為不能用運(yùn)算律來簡算,在解答過程中都用已學(xué)過的分?jǐn)?shù)乘法的計(jì)算法則算出答案。于是,我讓學(xué)生討論,看誰有辦法用簡算的辦法算出這道題的答案,鼓勵學(xué)生學(xué)會獨(dú)立思考。通過幾分鐘的討論,相當(dāng)一部分學(xué)生都確定這道題可用乘法分配律進(jìn)行簡算,只不過在簡算時要先把86×8485改寫成(85+1)×8485,然后再用乘法分配律即可計(jì)算出答案。

  《乘法分配律》教學(xué)反思20

  在設(shè)計(jì)本節(jié)課的過程中,我一直抱著“以學(xué)生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學(xué)習(xí)任務(wù)、參與共同的學(xué)習(xí)活動過程中實(shí)現(xiàn)不同的人的數(shù)學(xué)水平得到不同發(fā)展的教學(xué)方式。結(jié)合教學(xué)設(shè)計(jì),對本節(jié)課進(jìn)行以下反思:

  一、在 教學(xué)這節(jié)課時 ,我 以計(jì)算引入,復(fù)習(xí)舊知, 然后拋出一個較為復(fù)雜的算式“ 46×276+276×54”如何計(jì)算更簡便,一下子學(xué)生們鴉雀無聲了,他們陷入了沉思中,有的抓腦袋,有的搖頭,很是難為,這是,我很“自豪”的告訴他們,老師能在一秒鐘內(nèi)說出得數(shù),你們相信嗎?想知道老師的訣竅嗎? 一下子,把學(xué)生的求知欲和好奇心調(diào)動了起來。

  二、讓學(xué)生根據(jù)自己的愛好,選擇自己喜歡的方法列出來的算式就比較開放。 出示情景圖后,請學(xué)生自己思考,交流 。通過計(jì)算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上得到的結(jié)論,是來自于學(xué)生已有的數(shù)學(xué)知識水平的。通過用自己喜歡的方式來表達(dá)乘法分配律從而加以內(nèi)化。學(xué)生學(xué)得積極、學(xué)得主動、學(xué)得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的'多次類比中悟出規(guī)律。

  三、總體上我的教學(xué)思路是由具體——抽象——具體。在學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上,一起來研究抽象的算式,尋找它們各自的特點(diǎn),從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學(xué)是橫向觀察,也有同學(xué)是縱向觀察,我都予以肯定和表揚(yáng),目的是讓學(xué)生從自己的數(shù)學(xué)現(xiàn)實(shí)出發(fā),去嘗試解決問題,又能使不同思維水平的學(xué)生得到相應(yīng)的滿足,獲得相應(yīng)的成功體驗(yàn)。

  四、在學(xué)習(xí)中大膽放手,把學(xué)生放在主動探索知識規(guī)律的主體位置上,讓學(xué)生能自由地利用自己的知識經(jīng)驗(yàn)、思維方式去發(fā)現(xiàn)規(guī)律,驗(yàn)證規(guī)律,表示規(guī)律,歸納規(guī)律,應(yīng)用規(guī)律。教師“扶”得少,學(xué)生創(chuàng)造得多,學(xué)生學(xué)會的不僅僅是一條規(guī)律,更重要的是,學(xué)生學(xué)會了自主自動,學(xué)會了進(jìn)行合作,學(xué)會了獨(dú)立思考。這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學(xué)習(xí)習(xí)慣,會讓孩子一生受益。

  在本節(jié)課的教學(xué)設(shè)計(jì)上,我體現(xiàn)新課標(biāo)的一些理念,注重從學(xué)生的實(shí)際出發(fā),把數(shù)學(xué)知識同生活實(shí)際緊密聯(lián)系起來,讓學(xué)生在體驗(yàn)中學(xué)到知識。通過創(chuàng)設(shè)情境,設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)興趣。在練習(xí)題的設(shè)計(jì)上,我力求有針對性,有坡度,同時也注意知識的延伸。

  在教學(xué)過程中,也有不盡人意的地方,如雖然本節(jié)課在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上還不夠,因此在歸納乘法分配律的內(nèi)容時,學(xué)生難以完整地總結(jié)出乘法分配律,另外還有部分學(xué)困生對乘法分配律不太理解,運(yùn)用時問題較多等。教學(xué)乘法分配律之后,發(fā)現(xiàn)學(xué)生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。有余數(shù)的除法教學(xué)反思法國號教學(xué)反思吃水不忘挖井人教學(xué)反思

【《乘法分配律》教學(xué)反思】相關(guān)文章:

《乘法分配律》教學(xué)反思07-01

《乘法分配律》教學(xué)后反思06-14

《乘法分配律》教后反思02-29

乘法分配律教學(xué)設(shè)計(jì)09-26

乘法分配律課后的教學(xué)反思范文(精選10篇)09-24

人教版《乘法分配律》教學(xué)反思范文(通用6篇)07-07

數(shù)學(xué)《乘法分配律》優(yōu)秀教學(xué)反思范文(通用5篇)08-05

乘法分配律教案03-11

乘法分配律教案優(yōu)秀12-21

四年級乘法分配律教學(xué)反思(精選6篇)11-21